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Abstract. We consider generalizations of the standard Hamiltonian dynamics to complex dynamical vari-
ables and introduce the notions of real Hamiltonian form in analogy with the notion of real forms for
a simple Lie algebra. Thus to each real Hamiltonian system we are able to relate several nonequivalent
ones. On the example of the complex Toda chain we demonstrate how starting from a known integrable
Hamiltonian system (e.g. the Toda chain) one can complexify it and then project onto different real forms.

PACS. 02.30.Ik Integrable systems – 02.40.Tt Complex manifolds – 45.20.Jj Lagrangian
and Hamiltonian mechanics

1 Introduction

Recently the so-called complex Toda chain (CTC) was
shown to describe N -soliton interactions in the adiabatic
approximation [1–3]. The complete integrability of the
CTC is a direct consequence of the integrability of the
real (standard) Toda chain (TC); it was also shown that
CTC allows several dynamical regimes that are qualita-
tively different from the one of RTC [2]. These results as
well as the clear algebraic structures lying behind the in-
tegrability of CTC (such as, e.g. Lax representation) were
the stimulation for the present work.

We start from a standard (real) Hamiltonian sys-
tem H ≡ {ω, H,M} with n degrees of freedom and
Hamiltonian H depending analytically on the dynamical
variables. It is known that such systems can be complex-
ified and then written as a Hamiltonian system with 2n
(real) degrees of freedom. Our main aim is to show that to
each compatible involutive automorphism C̃ of the com-
plexified phase space we can relate a real Hamiltonian
form of the initial system with n degrees of freedom. Just
like to each complex Lie algebra one associates several in-
equivalent real forms, so to each H we associate several
inequivalent real forms HR ≡ {ωR, HR,MR}. Like the ini-
tial system H, the real form is defined on a manifold MR

with n real degrees of freedom. Provided C̃(H) = H the
dynamics on the real form will be well defined and will
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coincide with the dynamics on MC restricted to MR. If
the initial system H is integrable then its real Hamiltonian
forms will also be integrable. We pay special attention to
the connection with integrable systems and the possibil-
ity they offer to define a class of new integrable systems
starting from an initial one.

Examples of non-standard (or “twisted”) real forms
have already been studied by Evans and Madsen [4] in
connection with the problem of positive kinetic energy
terms in the Lagrangian description and with emphasis on
conformal WZNW models. Examples of indefinite-metric
Toda chain (IMTC) has already been studied by Kodama
and Ye [5]. In particular they note that while the solutions
of the TC model are regular for all t, the solutions of the
IMTC model develop singularities for finite values of t.

The approach we follow here is different and more gen-
eral than the ones in [4,5].

2 Real Hamiltonian forms

The idea of reducing the dynamics on a complexified phase
space to a real space and to obtain in this way a new dy-
namical system on a phase space which is isomorphic to
the initial real space could be pursued in different routes.
One could start with defining complex structure (or equiv-
alently Kähler polarization), then find the invariant polar-
izations which are naturally associated with an integrable
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system and to vary among them. Polarizations are best
known in the context of geometric quantization [6], see
also [7,8]. Another approach is to define a “complex con-
jugation operator” and to reduce dynamics to the real
space associated with this operator.

The approach we will follow in this paragraph is in-
spired by the basic idea of construction of real forms for
simple Lie algebras [9]. A basic tool in the following con-
struction is a Cartan-like involutive automorphism C̃ de-
fined below, which plays the rôle of a “complex conjuga-
tion operator”.

We start by introducing the involutive automor-
phism C on the phase space M(n) and on its dual1 by:

C ({F, G}) = {C(F ), C(G)} , C2 = 11, (1)

where F , G ∈ F(M(n)) are real analytic functions on
M(n). The involution acts on them by:

C(F (p1, . . . , pn, q1, . . . , qn)) =

F ((C(p1), . . . , C(pn), C(q1), . . . , C(qn))). (2)

Since C has eigenvalues 1 and −1 it naturally splits M(n)

into two subspaces M(n) = M(n)
+ ⊕M(n)

− such that

CX = X for X ∈ M(n+)
+ ,

CY = −Y for Y ∈ M(n−)
− . (3)

where n± = dimM(n±)
± . We will assume also that the

starting Hamiltonian H is invariant with respect to C:

C(H) = H. (4)

In terms of vector fields X, Y ∈ TM and the lifted
involution TC : TM → TM we have:

ω(TC(X), TC(Y )) = TC(ω(X, Y )), (TC)2 = 11. (5)

ω being the symplectic structure associated with the
Poisson brackets in (1).

The complexified phase space M(2n)
C

can be viewed as
a the linear space M(n) over the field of complex numbers:

M(2n)
C

= M(n) ⊕ iM(n).

In other words the dynamical variables pk, qk in M(n)
C

now may take complex values. The real analytic functions
F and G as well as the automorphism C can naturally
be extended to M(2n)

C
. In M(n)

C
along with C we can in-

troduce also the complex conjugation ∗. In this construc-
tion obviously C commutes with ∗ and their composition
C̃ = C ◦∗ = ∗◦C is an involutive automorphism on M(2n)

C
.

1 In general we should have different notations of C in these
spaces [10]. However, since our phase space is a vector space
with some abuse of notations we will use the same letter for
both realizations.

The real form M(n)
R

of the phase space is the subspace of
M(2n)

C
invariant with respect to C̃:

M(n)
R

= M(n+)
+ ⊕ iM(n−)

− . (6)

Indeed any element of M(n)
R

can be represented as:

Z = X + iY ∈ M(n)
R

, (7)

where X and Y are real-valued elements of M(n+)
+ and

M(n−)
− respectively. The reality condition means that

C̃Z ≡ C(Z∗) = C(X − iY) = X + iY = Z, (8)

where we have made use of equation (3).
Equation (1) guarantees that each of the subspaces

M(n+)
+ , M(n−)

− and M(n)
R

is a symplectic subspace of
M(2n)

C
. Indeed, let us assume that the symplectic struc-

ture on M(n) is defined by the canonical 2-form

ω =
n∑

k=1

dpk ∧ dqk.

Then on M(n+)
+ and M(n−)

− we have

ω+ =
n+∑
k=1

dp+
k ∧ dq+

k . ω− =
n−∑
k=1

dp−k ∧ dq−k ,

where p+
k , q+

k (resp. p−k , q−k ) are linearly independent non-
vanishing basic elements in M(n+)

+ (resp. M(n−)
− ). With

respect to the automorphism C they satisfy:

C(p±k ) = ±p±k , C(q±k ) = ±q±k , (9)

for all k = 1, . . . , n±.
The complexification of the dynamical variables F and

G means that they are now analytic functions of the
complex arguments qk = qk,0 + iqk,1, pk = pk,0 + ipk,1,
k = 1, . . . , n, or equivalently, of

p±k = p±k,0 + ip±k,1, q±k = q±k,0 + iq±k,1, k = 1, . . . , n±.

(10)

We will say that F, G ∈ F(M(n)
R

) if their arguments are
restricted to MR. Then F and G will satisfy the analog
of equation (2) with C replaced by C̃. Due to equation (1)
their Poisson bracket {F, G} ∈ F(M(n)

R
) too. If we choose

the Hamiltonian H ∈ F(M(n)
R

) then

C̃(dH) = dH. (11)

The evolution of the dynamical variable F :

dF

dt
= {H, F}, (12)
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becomes naturally restricted to M(n)
R

. Rewriting (12) into
its equivalent form:

ω(XH , ·) = dH, (13)

and making use of (5) we see that the vector field XH

must also satisfy

C̃(XH) = X
�C(H) = XH (14)

on M(n)
R

. The symplectic form restricted on M(n)
R

also
becomes real and equals

ωR =
n+∑
k=1

dp+
k,0 ∧ dq+

k,0 −
n−∑
k=1

dp−k,1 ∧ dq−k,1, (15)

where p+
k,0, q

+
k,0, k = 1, . . . , n+ and p−k,1, q−k,1, k = 1, . . . , n−

are the basic elements in M(n)
R

.
If M(2n)

C
is endowed with Hamiltonian which is “real”

with respect to C̃ and whose vector field XH satisfies (14)
then the restriction of the dynamics on {M(n)

R
, ωR, HR})

will be well defined and will coincide with the dynamics
on (M(2n)

C
, ω, H) restricted to M(n)

R
.

Thus we obtain a well defined dynamical system with n
degrees of freedom HR ≡ {MR, ωR, H} which we call a real
form of the initial Hamiltonian system H ≡ {M, ω, H}.

Let us outline our construction on the simplest possible
case when the initial Hamiltonian system is completely in-
tegrable and is parametrized by its action-angle variables
{I±k , φ±

k }, k = 1, . . . , n±. Let us also assume that the invo-
lution C is of the form C(dI±k ) = ±dI±k , C(dφ±

k ) = ±dφ±
k

for k = 1, . . . n±, n+ + n− = n. The complexification
renders all I±k and φ±

k complex: IC,±
k = I±k,0 + iI±k,1 and

φC,±
k = φ±

k,0 +iφ±
k,1 and the automorphism C̃ has the form:

C̃
(
dIC,±

k

)
= ±

(
dIC,±

k

)∗
, C̃

(
dφC,±

k

)
= ±

(
dφC,±

k

)∗
.

(16)

The automorphism C̃ obviously satisfies the condi-
tion (14). In order to satisfy also (4) we need to assume
that H is an even function of all I−k ∈ M−. Then the re-
striction on MR according to (7) and (16) means restrict-
ing all I+

k , φ+
k ∈ M+ to be real, while all I−k , φ−

k ∈ M−
become purely imaginary. Then:

HR = H
(
I+
1,0, . . . , I

+
n+,0, iI

−
1,1, . . . , iI

−
n−,1

)
,

ωR =
n+∑
k=1

dI+
k,0 ∧ dφ+

k,0 −
n−∑
k=1

dI−k,1 ∧ dφ−
k,1, (17)

and obviously we have again a completely integrable
Hamiltonian system.

To those who prefer to work only with real-valued dy-
namical variables we propose an alternative way of deriv-
ing the real Hamiltonian forms. This will also make clear
why we insisted on the Hamiltonian H and the dynamical

variables F to be analytic functions of qk and pk. This
condition means that H = H0 + iH1 must satisfy:

∂H0

∂qk,0
=

∂H1

∂qk,1
,

∂H1

∂qk,0
= − ∂H0

∂qk,1
· (18)

Then the equations of motion (12) with F = z and F = z̃
become:

dz

dt
=

(
−S+

0 0
0 S−

0

)
∇zH0,

dz̃

dt
=

(
−S−

0 0
0 S+

0

)
∇z̃H0,

(19)

with z =
(

x+

y−

)
, z̃ =

(
x−
y+

)
, x± =

(
p0
±

q0±

)
, y± =

(
p1
±

q1±

)
and S±

0 =
(

0 11n±

−11n± 0

)
, (∇zH0)k = ∂H0/∂zk. Note

that equation (19) has the form of a standard Hamiltonian
equation of motion for a system of 2n degrees of freedom
with Hamiltonian H0. The phase space of this system is
spanned by the 2n-component real-valued vectors z and
z̃ and the symplectic structure introduced by S±

0 corre-
sponds to the following 2-form:

ω(2n) =
∑
ε=±

n∑
k=1

(
dpε

k,0 ∧ dqε
k,0 − dpε

k,1 ∧ dqε
k,1

)
. (20)

The involutive automorphism C̃ acts on z and z̃ by:

C̃(z) = z, C̃(z̃) = −z̃, (21)

i.e., the phase space MR of the real Hamiltonian form
again is the invariant subspace of C̃.

The restriction of the equations (19) on MR means
that dz̃/dt = 0 identically. To be consistent we have to
show that ∇z̃R

H0 vanishes for z̃ = 0. Indeed, H0 is the
real part of a real analytic function satisfying equation (4).
This means that it is an even function of x− and y+ and
therefore, its derivatives evaluated for x− = 0 and y+ = 0
vanish. Thus we have proved that the equations (19) can
be consistently constrained to MR.

3 Completely integrable systems

Here we consider a completely integrable Hamiltonian sys-
tem whose phase space is parametrized by its action-angle
variables {I±k , φ±

k }, k = 1, . . . , n±. We define the involu-
tive automorphism C by C(dI±k ) = ±dI±k , C(dφ±

k ) = ±dφ±
k

and assume that the Hamiltonian is separable, i.e. H =∑n+
k=1 h+

k (I+
k )+

∑n−
k=1 h−

k (I−k ). Obviously the condition (4)
requires that h−

k (I−k ) must be even functions of I−k .
In purely algebraic language integrability can be char-

acterized by the existence of a maximal rank Abelian sub-
algebra in the commutant of the Hamiltonian. Another
important approach to completely integrable systems is
based on the notion of the recursion operator – a (1,1) ten-
sor field with vanishing Nijenhuis torsion [11]. This tensor
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field reflects the possibility to introduce a second symplec-
tic structure ω1 on M through:

ω1(X, Y ) =
1
2

(ω(TX, Y ) + ω(X, TY )) . (22)

In terms of I±k , φ±
k the tensor field T and ω1 can be ex-

pressed by:

T =
n+∑
k=1

T +
k +

n−∑
k=1

T−
k , ω1 =

n+∑
k=1

ω+
1,k +

n−∑
k=1

ω−
1,k,

T±
k = λ±

k (I±k )
(

dI±k ⊗ ∂

∂I±k
+ dφ±

k ⊗ ∂

∂φ±
k

)
, (23)

ω±
1,k = λ±

k (I±k )dI±k ∧ dφ±
k , (24)

where λ±
k (I±k ) are some functions of I±k ; we assume that

they are real analytic functions of their variables.
In order that ω1 also satisfy equation (5) it is enough

that C(T ) = T . In particular this means that λ−
k must

be even functions of I−k . If this is so then we can repeat
our construction also for ω1; i.e., we can complexify it and
then restrict it onto MR with the result:

TR =
n+∑
k=1

T +
k +

n−∑
k=1

T−
k , ω1,R =

n+∑
k=1

ω+
1,k −

n−∑
k=1

ω−
1,k

(25)

where in addition we have to replace λ−
k (Ik) by λ−

k (iIk).
Thus by construction, the restriction to other real

forms preserves the Nijenhuis property of T . Due to the
fact that existence of recursion operators is equivalent to
integrability at least in the non-resonant case, this line of
argumentation gives us another instrument to treat the
integrability of real forms.

The separability of H looks rather restrictive condi-
tion. However, all integrable systems obtained by reduc-
ing a soliton equation (like, e.g. the nonlinear Schrödinger
equation) on its N -soliton sector are separable.

4 Examples

Example 1 We illustrate our point by the paradigmical
example of the Toda chain related to the sl(n, C) algebra:

HTC =
n∑

k=1

p2
k

2
+

n−1∑
k=1

eqk+1−qk , ω =
n∑

k=1

dpk ∧ dqk.

We complexify it and choose the involution as:

C̃(pk) = −p∗̄k, C̃(qk) = −q∗̄k (26)

where k̄ = n + 1 − k. As a result we obtain the following
real forms of the TC model: i) for n = 2r + 1:

HTC1 =
1
2

r∑
k=1

((p+
k )2 − (p−k )2) − 1

2
(p−r+1)

2

+2
r−1∑
k=1

e(q+
k+1−q+

k )/
√

2 cos
q−k+1 − q−k√

2

+2e−q+
r /

√
2 cos

(
q−r+1 −

q−r√
2

)
, (27)

ωR =
r∑

k=1

dp+
k ∧ dq+

k −
r+1∑
k=1

dp−k ∧ dq−k . (28)

Here q±k and p±k are related to the initial qk, pk by:

p±k =
1√
2

(pk ∓ pk̄) , q±k =
1√
2

(qk ∓ qk̄) , (29)

for k = 1, . . . , r and

p−r+1 = pr+1, q−r+1 = qr+1, p+
r+1 = q+

r+1 = 0.

ii) for n = 2r:

HTC2 =
1
2

r∑
k=1

((p+
k )2 − (p−k )2) + e−

√
2q+

r

+2
r−1∑
k=1

e(q+
k+1−q+

k )/
√

2 cos
q−k+1 − q−k√

2
, (30)

ωR =
r∑

k=1

dp+
k ∧ dq+

k −
r∑

k=1

dp−k ∧ dq−k (31)

the canonical coordinates q±k and p±k are as in equa-
tion (29).

We can easily obtain the solutions for each of the mod-
els (27) and (30) from the solutions of the CTC model (see
e.g. [2] and the references therein) by just imposing the
corresponding reductions on the initial parameters.

These models are generalizations of the well known
Toda chain models associated to the classical Lie alge-
bras [12]; indeed if we put q−k ≡ 0 and p−k ≡ 0 we find
that (27) goes into the Br TC while (30) provides the
Cr TC.

5 Discussion

With each involutive automorphism C̃2 = 11 of the com-
plexified phase space we were able to associate to a given
Hamiltonian system H a new Hamiltonian system HR.
If the initial system H is integrable, so will be its real
Hamiltonian form HR. Obviously this method could be
naturally extended to other types of Poisson brackets, e.g.
the ones related with the structure constants of simple Lie
algebras.

Our method provides an effective tool to derive new
integrable Hamiltonian systems from a given one.
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